Particle- and crack-size dependency of lithium-ion battery materials LiFePO4
نویسندگان
چکیده
Lithium-ion batteries have become a widely-used commodity for satisfying the world’s mobile power needs. However, the mechanical degradation of lithium-ion batteries initiated by micro cracks is considered to be a bottleneck for advancing the current technology. This study utilizes a finite element method-based virtual crack closure technique to obtain particleand crack-sizedependent estimates of mixed-mode energy release rates and stress intensity factors. Interfacial cracks in orthotropic bi-materials are considered in the current study, whereas the crack extension along the interface is assumed. The results show that energy release rate, stress intensity factor, and the propensity of crack extension are particleand crack-sizedependent. In particular, our results show that for smaller plate-like LiFePO4 particles (100 nm 45 nm), a crack has lesser tendency to extend if crack-to-particle size is less than 0.2, and for 200 nm 90 nm particles, similar results are obtained for crack-to-particle sizes of less than 0.15. However, for larger particles (500 nm 225 nm), it requires an almost flawless particle to have no crack extension. Therefore, the current study provides insight into the fracture mechanics of LiFePO4 and the associated crack-to-particle size dependency to prevent crack extensions.
منابع مشابه
Doped LiFePO4 Cathodes for High Power Density Lithium Ion Batteries
Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode materials in lithium ion batteries, but with a lower raw materials cost and an increased level of safety. An inherent limitation of LiFePO4 acknowledged by researchers studying t...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملMultiscale modelling and analysis of lithium-ion battery charge and discharge
A microscopic model of a lithium battery is developed, which accounts for lithium diffusion within particles, transfer of lithium from particles to the electrolyte and transport within the electrolyte assuming a dilute electrolyte and Butler–Volmer reaction kinetics. Exploiting the small size of the particles relative to the electrode dimensions, a homogenised model (in agreement with existing ...
متن کاملReversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow bat...
متن کاملHigh-capacity battery cathode prelithiation to offset initial lithium loss
Loss of lithium in the initial cycles appreciably reduces the energy density of lithium-ion batteries. Anode prelithiation is a common approach to address the problem, although it faces the issues of high chemical reactivity and instability in ambient and battery processing conditions. Here we report a facile cathode prelithiation method that o ers high prelithiation e cacy and good compatibili...
متن کامل